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Abstract
We investigate how finite measurement time limits the accuracy with which the
parameters of a stably distributed random series of events can be determined.
The model process is generated by timing the emigration of individuals from
a population that is subject to deaths and a particular choice of multiple
immigration events. This leads to a scale-free discrete random process where
customary measures, such as mean value and variance, do not exist. However,
converting the number of events occurring in fixed time intervals to a 1-bit
‘clipped’ process allows the construction of well-behaved statistics that still
retain vestiges of the original power-law and fluctuation properties. These
statistics include the clipped mean and correlation function, from measurements
of which both the power-law index of the distribution of events and the time
constant of its fluctuations can be deduced. We report here a theoretical
analysis of the accuracy of measurements of the mean of the clipped process.
This indicates that, for a fixed experiment time, the error on measurements of
the sample mean is minimized by an optimum choice of the number of samples.
It is shown furthermore that this choice is sensitive to the power-law index and
that the approach to Poisson statistics is dominated by rare events or ‘outliers’.
Our results are supported by numerical simulation.

PACS numbers: 02.50.−r, 05.40.−a, 05.45.Tp, 06.20.Dk

1. Introduction

Complex systems exhibiting scale-free behaviour are ubiquitous in nature. Fractal and self-
affine systems have been studied extensively for many decades following recognition of the
existence of objects that manifest hierarchical structure. In the context of continuous random
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media, power-law spectra are commonly used to characterize multi-scale phenomena such as
turbulence and rough surfaces. More recently interest has focused on probability densities
with power-law tails, such as the Lévy stable distributions that can be used to characterize
the connectivity of natural and fabricated scale-free networks. These range from genome,
proteome and other symbiotic interactions to the topology of the www and economic and
social interactions [1].

The characterization of random processes exhibiting power-law behaviour raises
interesting questions regarding the accuracy of parameter estimation from finite data sets.
For example, it has been shown that the accuracy of measurements of the spectral power-law
of a Gaussian random fractal does not necessarily improve inversely as the number of samples
but at a slower rate depending on the power-law index [2]. This means that the characterization
of objects such as rough surfaces, which are known to exhibit multi-scale behaviour, is subject
to larger errors than might have been anticipated.

A related problem that will be investigated in the present paper is encountered specifically
in measurements on systems characterized by heavy tailed single-interval distributions such
as the Lévy stable class [3]. Properties of these distributions such as variance, autocorrelation
function and higher order moments are ill defined. Although in practice these quantities will
always be finite for a finite data set, they increase with time without limit due to the slow decay
of the distribution function tail. Classification has therefore to date largely relied on direct
distribution measurements [4, 5]. However, the validity of such measurements will also be
constrained by the length of the data set and more particularly by the dynamic range imposed
in the measuring process, which may well be unknown.

Many systems characterized by power-law single interval distributions can legitimately
be modelled using a mean-field approximation [6] where the size of the system is assumed
to be sufficiently large so that it can be approximated by a continuum. However, some
authors have noted that the discrete nature of certain processes is important, both in terms of
formulation [7] and effect [8], with quantization incorporating intrinsic noise into the models
in a natural way. With this in mind we have previously developed a stochastic model that
generates a population of individuals that can have fluctuations with a Lorentzian spectrum
but governed by a single interval distribution that belongs to the discrete-stable class [9].
Allowing individuals to escape from this population in a manner similar to the emission
of photons from a cavity [10] forms a time series of events that can be monitored through
counting the number of emigration events n in the time intervals T [11]. The probability
distribution of the n counts of this external series of events, pn(T ), possesses a similar power-
law behaviour to the population that produces them and the associated moments and correlation
functions are undefined [9]. This provides a model that can be used to explore the measurement
problems outlined above, being at the same time analytically tractable and capable of numerical
simulation.

In order to limit the excursions of the data generated by this model we adopt a nonlinear
signal-processing technique known as ‘clipping’ [12–15] which regularizes the power-law
fluctuations. An extreme form of clipping that has proved useful in other contexts [16]
transforms the process into a 1-bit data stream. In practice, this procedure might be adopted to
overcome the problem of an unknown detector response to the large fluctuations characterizing
discrete-stable fluctuations. The resulting data stream is easy to analyse theoretically and
previous work has shown that it retains sufficient information to characterize the original
process at a relatively small cost in statistical accuracy. Moreover, since the moments
and correlation functions of the 1-bit data stream are finite, they provide a new means
for characterizing discrete-stable processes. The principal novel content of this paper is a
statistical accuracy analysis of power-law data that have been processed in this way.
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Section 2 provides a brief overview of the population model, formulation of the monitoring
scheme, implementation of the clipping technique and subsequent construction of the clipped
mean. Section 3 revisits calculation of the variance of a sampled mean for the well-known
thermal model of photon counting statistics and also the equivalent clipped process, revealing
the existence of an optimum number of samples for a given experiment duration. Section 4
extends this analysis to the case of a series of events generated by a discrete-stable process. In
particular, we present the results of a calculation of the variance of an estimate of the clipped
mean. Results and conclusions are contained in section 5.

2. The population model

We consider a population model whose dynamics are governed by deaths that occur at rate µ

in proportion to the instantaneous population size N and immigrants that enter the population
in multiples with rates αm, particular to their order m. The rate equation for this process is

dPN(t)

dt
= µ(N + 1)PN+1 − µNPN − PN

∞∑
m=1

αm +
N∑

m=1

αmPN−m. (1)

This describes the evolution of PN(t), the probability that the population comprises N members
at time t. The multiple immigration rates allow the population model to be ‘tuned’ to adopt
specific behaviours. In particular, the following choice leads to a discrete-stable process:

αm = a�(m − ν)

�(−ν)m!
0 < ν � 1. (2)

Solving the rate equation (1) with the help of the generating function

Q(s; t) =
∞∑

n=0

(1 − s)nPN(t) (3)

leads to the solution [9]

Q(s; t) = (1 − f (s; t))M exp

(
−asν

νµ
(1 − exp(−νµt)

)
(4)

where

f (s; t) = s exp(−µt).

Here a is a positive real constant and the process is initiated with M individuals present.
In the large time limit (4) reduces to the generating function for the class of discrete-stable
distributions:

Q(s) = exp

(
−asν

νµ

)
≡ exp(−Asν). (5)

For the case ν = 1, (5) is the generating function for a Poisson distribution: the equilibrium
distribution for a process comprising deaths and only single immigrants. Furthermore, the
scaling factor A becomes the mean in this case. According to (3), the probability distribution
and factorial moments are both derived from the generating function by differentiation,

PN = PN(t → ∞) = (−1)N

N !

dNQ(s)

dsN

∣∣∣∣
s=1

(6)

〈N(N − 1)(N − 2) . . . (N − r + 1)〉
〈N〉r =

( −1

〈N〉
d

ds

)r

Q(s)

∣∣∣∣
s=0

(7)
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and so the solution (5) implies that if N � 1, PN ∼ 1/N1+ν , giving an inverse power-law
asymptote with index lying between one and two. Thus the moments of these distributions are
theoretically infinite for values of ν in the allowed range except for the Poisson case ν = 1. It
is readily shown from the conditional solution (4) that the corresponding correlation functions
are also ill defined.

A series of events is now generated by allowing individuals to leave the population at a
rate η that is proportional to the number present, leading to an increased death rate within
the population of µ̄ = µ + η. This process has an analogue in quantum optics [18] where
inferences about the population inside a laser cavity, for example, can be made from samples
of the series of photon events registered during a finite time due to light leaving the cavity. It
will be assumed here that the emigration events are sampled by counting the number n(t, T )

in contiguous time intervals of duration T (the ‘integration’ time). This utilizes the maximum
amount of data that is available although there will in general be correlation between samples.

The probability of there being N individuals within the population and recording n
emigrations from it within an integration time, pN,n(T ), can be determined using the joint
generating function for the monitored population

Qc(s, z; T ) =
∞∑

N,n=0

(1 − s)N(1 − z)npN,n(T ).

This satisfies the partial differential equation [9]

∂Qc

∂t
= (ηz − µ̄s)

∂Qc

∂s
− aνsνQc. (8)

The full solution of this equation was derived in [9] and is reproduced in the appendix.
For present purposes, interest resides in the marginal distribution pn(T ) of counting n external
events within an integration time T. This is constructed from the generating function by setting
s = 0 in the solution of (8):

Qc(0, z; T ) = exp{−Azν[η(1 − e−µ̄T )/µ̄]νF (1, ν; ν + 1; 1 − e−µ̄T )} (9)

where F = 2F1 is the hypergeometric function [19]. The z-dependence of this quantity is
similar to the s-dependence in (5) and so the distribution of the monitored population also has
a power-law tail for all integration times T,

p(n; T ) ≈ Cn−(ν+1), (10)

and all its moments are infinite. Furthermore, it is possible to calculate the joint distribution of
finding n counts in an integration time T centred at time t and n counts in an identical interval
at a later time t + τ (see appendix of [9]). These joint probabilities again have power-law tails
implying that all joint statistics such as autocorrelation functions are infinite. Consequently,
there is no moment-based method for classifying raw power-law data generated by this model.

Numerical simulation shows that individual realizations of the process described above
exhibit intermittent bursts of large numbers of emigrants from the population and this is the
source of the heavy tailed distributions and infinite moments. However, any detection system
will have a finite dynamic range (due, for example, to its finite response time or to saturation
of the detector) and it may not correctly register large excursions in n(t; T ). Indeed, the
consequent distortion of the data may be unknown. One way to ameliorate this problem and
at the same time regularize the measured statistics is to apply a known operation on the data
to eliminate regimes where the response of the detection system is suspect. The simplest
such processing technique is ‘clipping’ or ‘limiting’ [12], in which the number of counts in
an integration time is replaced by one or zero according to whether it lies above or below
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a pre-determined level. Hard limiting [13] is the simplest but most severe form of clipping
where the clipping level is set equal to zero:

cj (T ) =
{

0 n(tj , T ) = 0

1 n(tj , T ) � 1.
(11)

Here n(tj , T ) is the sampled time series, cj (T ) is the new clipped time series and tj = jT .
The generating function for the clipped distribution is particularly simple,

Qcl(z; T ) =
1∑

n=0

(1 − z)npn(T ) = p0(T ) + (1 − z)(1 − p0(T )). (12)

Noting that p0(T ) = Qc(0, 1; T ), the clipped mean can be written as a function of the
integration time from (11) and (12) as follows:

c̄(T ) = 1 − p0(T ) = 1 − Qc(0, 1; T ) (13a)

= 1 − exp{−A[η(1 − e−µ̄T )/µ̄]νF (1, ν; ν + 1; 1 − e−µ̄T )} (13b)

It is shown in [9] that both the clipped mean and autocorrelation function exhibit power-
law behaviour with T when the integration time is much less than the correlation time of
the population fluctuations. In particular, the clipped mean does not scale linearly with the
integration time, but rather has the asymptotic behaviour

c̄(T ) ≈ A(ηT )ν; µ̄T 	 1. (14)

The power-law scaling with T manifest in (14) despite the loss of amplitude information is a
consequence of the fact that the power-law fluctuations in the size of the original population
are transferred to the dispersion of emigration events in time. It is possible to construct
realizations of this population process using techniques detailed in [20]. Figure 1(a) shows a
realization of the sampled emanations from the discrete-stable process with ν = 0.1. Note the
large infrequent fluctuations. The inset figure shows the equivalent clipped time series for this
realization and serves to highlight the intermittent bursts of events produced by a process with
small index ν. Figure 1(b) shows a realization for the same process but with ν = 0.8. For
this realization, the fluctuations are far more frequent but their magnitude is smaller, which is
highlighted by the inset figure showing the very ‘busy’ clipped signal.

It follows from (14) that ν is the slope of the line obtained by plotting the logarithm of
the clipped mean against the logarithm of the sample time. In practice, this would be deduced
from estimates of the clipped mean constructed over a finite experiment time and is subject to
error due to the random nature of the process. However, it does provide a simple alternative
method for estimating the power law characterizing the process and the remainder of this paper
will be concerned with the accuracy of such measurements.

3. Accuracy of estimates of the mean of a birth–death–immigration process

Before considering the problem of measurement accuracy in the case of the stably distributed
discrete series of events of interest here, we shall briefly review the standard calculation for
a birth–death–immigration process [21], including the effect caused by clipping. This will
revise the approach in terms of a well-understood train of events, establish the notation and
enable the special features encountered in the case of stable processes to be highlighted. As
indicated above, we are concerned here with one of the simpler statistical properties of the
data, namely, its mean value as a function of integration time T. There is, of course, a difference
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Figure 1. (a) A realization of sampled emigrations for the discrete-stable population model, with
a = 1, η = 1, µ̄ = 1, ν = 0.1 and T = 0.5. Note the large fluctuations in population size and the
intermittent events. An outer scale of 2000 was imposed on the simulation. (b) A realization of
the same process but with ν = 0.8.

between the true mean and the sample mean acquired in an experiment time of finite duration.
The sample mean is an estimate that may be biased and the values of a series of estimates
will be scattered around the true mean with a variance that depends on the experiment time
and other factors. It is an experimenter’s objective to minimize this error by optimizing the
measurement parameters under his control.

Consider a process with mean n̄, an estimator for which is the sample mean

n̂(T ) = 1

N

N∑
j=1

n(tj , T ) ≡ 1

N

N∑
j=1

nj . (15)

In (15) the time at which each sample is taken is tj = jT and NT = texp is the experiment
time. The estimate n̂(T ) is unbiased because 〈n̂〉 = n̄. We can now construct the variance of
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the sample mean

V arn̂(T ) ≡ δ2(n̂) = 1

N2

N∑
j=1

N∑
k=1

[〈njnk〉 − n̄2]. (16)

This can be simplified further by exploiting the symmetry properties of the correlations and
noting that the diagonal terms are identical, whereupon equation (16) becomes

δ2(n̂)

n̄2
= δ2

n

Nn̄2
+

2

Nn̄2

N−1∑
k=1

(
1 − k

N

)
[R(kT , T ) − n̄2] (17)

where R(kT , T ) is the autocorrelation function of n and δ2
n is the variance of the estimate

(15). Note that this is a function of the number of samples N, the integration time T and the
correlation time of the process.

For the case of a birth–death–immigration population model we can use the following
well-known results for the mean, variance and autocorrelation function (see, for example,
[17]):

n̄ = rT (18a)

δ2
n = n̄ +

n̄2

β

(
1

γ
+

exp(−2γ )

2γ 2
− 1

2γ 2

)
(18b)

R(t, T ) = n̄2

(
1 +

1

β

(
sinh(γ )

γ

)2

exp[−(µ̄ − λ)t]

)
(18c)

γ = (µ̄ − λ)T

2
, t � T . (18d)

Here r is the average rate at which events occur and β is the cluster parameter defined as
the ratio of the immigration rate to the birth rate, µ̄ is the population death rate enhanced by
emigration as discussed in the last section and λ is the birth rate. We have shown in a previous
paper that these results are structurally identical to those for the death-multiple immigration
process with geometrically distributed immigrant groups [16]. Substituting the above into
equation (17), performing the sum and expressing the total measurement time in terms of the
integration time T, texp = NT gives the result

δ2

n̄2
= 1

texp

(
1

r
+

2

β(µ̄ − λ)

)
. (19)

Note that this formula depends only on the product of the number of samples and the integration
time, i.e. the total experiment time. Otherwise it is a function of parameters of the population
process that are beyond the control of the experimenter. Thus the error on a measurement of
the mean can only be reduced by increasing the length of the data run and not by changing the
way that the data are sub-divided into its constituent integration periods. This is a consequence
of all events being recorded for contiguous sampling and the fact that in the case of a simple
birth–death–immigration process the mean (18a) increases linearly with integration time.

It is not difficult to generalize the above calculation to the case where the data samples are
not contiguous but separated by fixed periods. The number of samples within the experiment
time is reduced in this case and the error increases because information has been discarded.

The same approach can be used to evaluate the variance of an unbiased estimate ĉ(T ) of
the mean c̄(T ) of the equivalent clipped process. The diagonal terms of the correlation matrix
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δ

Figure 2. Relative variance of estimates of the clipped mean of a birth–death–immigration
population plotted against sample number for the event rates shown and fixed experiment time.
The graphs are normalized against the (constant) relative variance of an estimate of the true mean.

are equal to the variance of the clipped mean. However, c2(t, T ) = c(t, T ) since the clipped
counts are either 0 or 1. Hence the error is given by

δ2(ĉ)

c̄2
= 1

Nc̄
+

2

Nc̄2

N−1∑
k=1

(
1 − k

N

)
[ζ(kT , T ) − c̄2]. (20)

This result replaces (17) for any series of events clipped at zero as in equation (11). As
indicated in equation (13), the clipped mean is simply related to the generating function for
the original series of events. Expressions for both this and ζ(t, T ), the clipped autocorrelation
function, are given in the appendix for the birth–death–immigration process. Figure 2 shows
a plot of the relative variance of measurements of the clipped mean normalized by that of
measurements of the true mean, equation (19), for contiguous sampling of a birth–death–
immigration population model. The graphs are plotted as a function of the number N of
samples taken in a fixed experiment time equal to 10 correlation times (i.e. 10/(µ̄ − λ); see
equations (18c), (18d) for various values of the count rate r. The variance of the clipped mean
exhibits a minimum, converging towards the unclipped result when the N is large because the
number of events in each integration time is small in this limit and clipping has little effect. On
the other hand, as N → 1, (T → texp) the clipped mean eventually saturates at unity so more
information is lost leading to an increasing relative error. The minimum of the curve is deeper
and occurs at larger values of N when the count rate is large. This is because the clipped mean
increases more rapidly to unity with increasing integration time in this case with an associated
decrease in the first of the two contributions appearing on the right-hand side of equation (20).
The location of the minimum value of the variance is determined by the balance between these
contributions. Note that in the special case of a Poisson process where the birth rate is zero
(β → ∞) the second contributions in (19) and (20) vanish and the relative variance curve
for the clipped process exhibits no minimum as the number of samples is reduced but only a
monotonic increase above the value taken by the original process at large values of N. It is not
difficult to deduce that in this case the ratio of results (20) to (19) is n̄/[1 − exp(−n̄)] with
n̄ = rT = rtexp/N .

It must be emphasized that although under certain conditions the relative variance of the
clipped mean is less than that of the true mean this does not imply that measurement accuracy
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δ

Figure 3. The variance of estimates of the clipped mean of a discrete-stable process as a function of
the number samples, for a = 1, µ̄ = 1 and the values of ν shown. The experiment time texp = 10.

can be improved by clipping. This is because, after clipping, an estimate of the true mean can
only be deduced through formula (13a) that relates the clipped mean to the true mean, namely
the probability of finding no events in the time interval T. It is readily shown from this formula
that the relative variance of estimates of the true mean is always increased by clipping.

4. Accuracy of estimates of the clipped mean of a discrete-stable process

The clipped result (14) provides a method for determining ν based on a measurement of the
clipped mean as a function of the integration time T. For example, a simple two-point fit gives
ν̂ = ln(ĉ1/ĉ2)/ ln(T1/T2). According to the calculation of small variations, the variance of the
index value obtained in this way is proportional to the relative variance of the clipped mean:

(δν̂)2 ∝ (δĉ)2

c̄2
. (21)

Figure 3 shows the relative variance of the clipped mean computed from equation (20) for a
fixed experiment time as a function of the number of samples N and for a selection of values for
the index of the power-law ν. Result (13b) has been used in this calculation together with the
correlation function for the clipped process derived in [9] and quoted in the appendix. Just as
in the case of the clipped birth–death–immigration process (figure 2) the curves exhibit minima
for specific values of N or, equivalently, integration time T. If the number of contiguous samples
is increased beyond the minimum in figure 3, however, the relative error in measurements of
the clipped mean increases without limit for fixed experiment time. This is because improved
resolution reveals more events and clipping continues to discard information in this limit unlike
the case of the clipped birth–death–immigration process discussed in section 3. The relative
variance of an estimate of the clipped mean in that case converged to the finite unclipped result
when the samples contain so few events that clipping had little effect (figure 2).

Another feature of figure 3 is the crossover of curves relating to different values of ν,
implying that processes with different indices may display the same spread of estimates in
an experiment of finite duration. This effect can be attributed to the form of the normalized
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δ

v

µ

µ

µ

Figure 4. First channel of the normalized clipped autocorrelation function (k = 1) as a function
of the index of power-law index for the values of µ̄T shown (a = 1, µ̄ = 1).

ζ

Figure 5. Normalized clipped autocorrelation function as a function of delay time for the values
of the power-law index shown.

clipped autocorrelation function ζ that appears in equation (20). For all integration times, this
is given at k = 1 by

ζ(T , T )

c̄2
≈ 1 +

µ̄ν

a
(2 − 2ν)(ηT )−ν . (22)

Figure 4 shows that, for all integration times, the degree of correlation at k = 1 increases
from its value for small power-law index to a maximum near ν = 0.8 and then decreases
again as the index approaches unity. Figure 5 shows ζ/c̄2 as a function of k. As ν

increases towards the value of 0.8, the degree of correlation ζ(kT , T ) increases at small delay
times but decays more rapidly for large values. Thus at small k the curve for ν = 0.6 is
below than that for ν = 0.8; however, the correlation between samples for the smaller index
persists to higher values of k. In fact for ν ∼ 0.1 (not shown) there is no discernable change
in the clipped autocorrelation until k ∼ 2000. Conversely, for larger indices (ν ∼ 0.8) the
correlation function falls off quite quickly beyond k ∼ 10. This behaviour is manifest in the
realizations shown in figure 1, where part (a) suggests large but infrequent events that result in
weak and long lasting correlations whereas part (b) indicates small but frequent fluctuations,
which cause strong and short-lived correlations. It is the competition between these properties
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δ

v

v

(a)

(b)

Figure 6. (a) Number of samples required to minimize the variance of measurements of the clipped
mean as a function of the power-law index. (b) Value of the minimum error produced by optimum
sampling for different values of the power-law index.

in the second term of equation (20) that determines the positions of the minima of the relative
error curves displayed in figure 4 and the crossover between curves with different values of
the power-law index.

Figure 6(a) shows the number of samples required to minimize the variance of
measurements of the clipped mean as a function of the index of the distribution. It indicates
that a greater number of samples are required to produce the minimum error for small indices
compared with those close to 0.8, which require relatively few. The weak but persistent
correlations for small values of ν, as opposed to the stronger shorter-lived correlations of
larger indices (ν ∼ 0.8), account for this difference. Figure 6(b) displays the value of the
minimum error produced by sampling at that optimum number as a function of the index.
Clearly a longer experiment time is required to achieve the same accuracy in a measurement
of the clipped mean for the larger values than for the smaller values of ν. Figure 7 shows
plots of the un-normalized variance of estimates of the clipped mean measured with optimum
data resolution (integration time/number of samples) as a function of experiment time. These
decrease more slowly than linear and are reminiscent of the results obtained for measurements
on fractal surfaces [2].

Figure 8 shows the normalized variance of the clipped mean for values of ν close to 1
and for ν = 1. It is clear that the curves evolve smoothly to the Poisson case in accord with
the behaviour of Nmin in figure 6(a). As noted previously (section 3), in that case there is
no minimum in the relative error versus N curve because clipping has no effect when N is
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δ

Figure 7. Relative variance of estimates of the clipped mean in the case of optimal sampling as a
function of experiment time for the values of the power-law index shown.

δ

Figure 8. Relative variance of estimates of the clipped mean for values of ν close to 1 and for
ν = 1.

sufficiently large and the error in the clipped mean saturates at that of the mean of the original
series of events.

From an experimental perspective, monitoring stable processes with indices close to unity
could prove problematic, for if insufficient samples were taken, it would not be possible
to distinguish a discrete-stable process from a Poisson process. One might be tempted
however to argue that a process with ν ≈ 1 is effectively a Poisson process. Figure 9(a)
shows the Poisson probability distribution [22] together with two examples of discrete-stable
probability distributions that have indices very close to 1. It is apparent that these discrete-
stable distributions are indistinguishable from a Poisson distribution up to the point that their
power-law tails become established. Such a process would consist largely of small fluctuations
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(a)

(b)

Figure 9. (a) Poisson distribution together with two examples of discrete-stable distributions that
have indices very close to 1. (b) Realization of a discrete-stable process with v = 0.999.

in the population size punctuated by rare but large events. Figure 9(b) shows a realization of
a discrete-stable process with v = 0.999. The majority of the realization follows that of a
Poisson distribution with the exception of two extreme events. The probability of these events
occurring in a Poisson process are approximately 1/16! (4.8×10−14) for the event at t ∼ 1250
and 1/70! (8.3 × 10−101) for the event at t ∼ 5000. The probability that these events occur in
the stable process with index v = 0.999 are 4.9 × 10−6 and 2.1 × 10−7 respectively. Events
such as these might be termed ‘outliers’ in the context of a Poisson process, but are nevertheless
an integral part of the discrete-stable process and occur with much greater frequency.

5. Summary and conclusion

This paper has studied the accuracy of measurements of an external series of events generated
by individuals leaving a population whose fluctuations are governed by the class of discrete-
stable distributions [9]. In the analysis of such a process, characterization is problematic
due to the presence of a power-law tail in the probability distribution. This means that no
moment-based statistics such as the mean or autocorrelation function exist. By implementing
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a simple nonlinear signal processing technique known as ‘clipping’, we have shown how the
external series of events can be regularized so that the moments and correlation functions of
the new 1-bit process are finite. These provide new options for the determination of parameters
such as the power-law index that characterize the original process and we have extended the
approach used in earlier work to investigate the statistical accuracy of such measurements. In
particular, the characteristic index of the process can be deduced from the integration time
dependence of estimates of the clipped mean and we have calculated the variance of these.

Unlike the case of a classical birth–death–immigration process, the variance of estimates
of the clipped mean of a series of events generated by a discrete-stable process increase without
limit as the number of samples in a fixed experiment time is increased. In the birth–death–
immigration case the chance of finding more than one event in an integration time becomes
so small for sufficiently large N that clipping has no effect, whilst correlation means that the
effective number of independent samples saturates. Thus the statistical error converges to that
of the unclipped case as the experiment time is divided up into more and more samples. In
the case of events generated by a stable process, however, the number of events decreases
more slowly with integration time so that clipping continues to discard information whilst the
samples become more correlated. This leads to the divergence of the error with increasing
number of samples shown in figure 4 and according to equation (21) means that not only
is there is an optimum number of samples into which any fixed experiment time should be
divided in order to obtain the best estimate of the characteristic power-law but that the accuracy
of such measurements will deteriorate without limit if the data resolution is improved beyond
this optimum value. When the data are optimally sampled the relative variance of estimates
of the power-law improves more slowly with experiment time than a simple reciprocal scaling
(figure 7). This is similar to results found previously for measurements on Gaussian random
fractals

The optimum value of N is influenced by the correlation properties of the underlying
process. We have found that these correlations can be persistent for events generated by a
stable process. For example, the degree of correlation for small power-law indices is small
but extends over long periods so that the optimum number of samples is large. Conversely,
as ν → 1 the population and counting processes become ostensibly more Poisson-like in
nature. In this limit emanations from the population comprise small, Poisson-like fluctuations,
punctuated by extreme rare events relating to the residual tail of the discrete-stable distribution.
These extreme events have the characteristics customarily associated with outliers; however,
they are an integral part of a discrete-stable process distinct from the Poisson case ν = 1.

In conclusion, we have demonstrated some of the subtleties that may be encountered
in making measurements on correlated random series of events characterized by power-law
probability distributions. This paper concentrated on the accuracy of estimates of the mean
number of clipped events generated by a discrete-stable process with the clipping level set at
unity (equation (11)). Improvements in accuracy could be sought by increasing the threshold
of the clipping level so that less information is discarded. We have not investigated the
implications of our results for the determination of particular parameters of the model in detail
although equation (21) makes predictions for the power-law index itself.

The accuracy analysis can be employed to consider a wider class of scale-free fluctuations
than the discrete-stable class considered here. A nonlinearly coupled population model is
investigated in [23] which, for a particular choice of model parameters, gives scale-free
distributions with generating function

Q(s) = 1

1 + Asν
. (23)
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Although not of the discrete-stable class, the tails of the corresponding distributions are
the same as that of the class of discrete-stable distributions. The accuracy of measurements is
a key consideration in the analysis and evaluation of data enabling different stochastic models
to be distinguished and matched to physical processes.
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Appendix

The clipped autocorrelation function is defined as

ζ(T ,�t)

c̄2
= 〈c(0, T )c(T + �t, T )〉

〈c(T )〉2
= (1 − 2Qc(0, 1; T ) + R(1, 1; T + �t, T ))

(1 − Qc(0, 1; T ))2
(A.1)

where

R(z, z′; t, T ) = Q2(0, z′; T )Q1(
(0, z′; T ); t − T )Q2(f (
(0, z′; T ); t − T ), z; T )

×Q1(
(f (
(0, z′; T ); t − T ), z; T ),∞), (A.2)

and where the generating functions with equation (A.1) are in the table below for the birth–
death–immigration and discrete-stable population models, respectively.

Birth–death–immigration model Discrete-stable model

Q1

(
1 + N̄

β
s(1 − exp(−µ̄t))

)−β

exp
(
− asν

νµ
(1 − exp(−νµt)

)
f

s exp(−µ̄t)

1+ N̄
β s(1−exp(−µ̄t))

s exp(−µt)

Q2

(
u+−u−

(s−u−)eλu+T −(s−u+)eλu−T

)β

exp
(
− a

(1+ν)ηz

(

(s, z; T )ν+1F

(
1 + ν, 1, 2 + ν; µ̄


ηz

)
− sν+1F

(
1 + ν, 1, 2 + ν; µ̄s

ηz

)))



u+(s−u−)eλu+T −u−(s−u+)eλu−T

(s−u−)eλu+T −(s−u+)eλu−T

ηz+(µ̄s−ηz) exp(−µ̄T )
µ̄

The constant λ is the birth rate of the process and

u± = −µ̄ + λ ± [(µ̄ − λ)2 + 4ληz]1/2

2λ
, (A.3)

Qc(s, z; T ) = Q1(
(s, z; T ),∞)Q2(s, z; T ) (A.4)

and F(a, b, c; x) is the hypergeometric function [19]. A full derivation can be found in [9].
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